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Abstract— Nowadays, the adaptive optics (AO) system is
of fundamental importance to improve the real resolution of
ground-based telescopes. In practical applications the telescope
resolution is limited by the atmospheric turbulence. The aim of
the AO system is that of estimating the atmospheric turbulence
and computing a suitable input for a set of deformable mirrors
to reduce the turbulence effect. A commonly accepted assump-
tion is that of considering the turbulence as formed by a discrete
set of layers moving over the telescope lens. In this paper, we
first propose a method for estimating the number of layers and
their characteristics. Then, we exploit the information on the
turbulence layers to construct a linear predictor of the turbulent
phase. Performance of the proposed method is shown by means
of simulations.

I. INTRODUCTION

The wavefront signal from a star object to a ground-based

telescope is distorted along the light path proportionally

to the length of the optic path, and depending on the

encountered refraction index. Actually, changes in the local

temperature and the presence of wind make the refraction

index of the atmosphere change quite fast both spatially and

temporally. As a consequence, the light beams are delayed of

a different phase. Therefore, a flat wavefront surface coming

from a star is no longer flat when it is detected on the

telescope pupil, thus significantly reducing the real resolution

of the telescope. Hereafter, we will call turbulent phase the

set of phase delays of the beams arriving on the telescope

pupil.

To reduce the problems due to the presence of the at-

mospheric turbulence, telescopes are usually provided with

an adaptive optics (AO) system [1], that commands a set

of correction mirrors (or deformable mirrors) to adapt their

shapes so as to compensate for the current value of the

turbulent phase. Thus the beams arriving on the telescope

pupil, after passing through the deformable mirrors, have a

residual turbulent phase as close to zero as possible. A cycle

of the AO system’s working procedure can be summarized

into three steps, namely 1) estimating the current turbulent

phase, 2) predicting the new one, and 3) computing the
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proper control input for the set of deformable mirrors. Notice

that the control is commonly delayed of two sample periods,

that is the time needed for image acquisition and phase

reconstruction (see [2], [3]). This fact makes the prediction

step fundamental to yield good performance of the AO

system.

The atmospheric turbulence is commonly described as a

set of layers moving at different altitudes over the telescope

lens. The total effect of these layers is usually computed as a

linear combination of the values of the single layers. In this

paper we describe a method to estimate the characteristics of

the layers (energies and velocities) from the turbulent phase

measurements. Then, by exploiting the estimated character-

istics of the turbulence, we temporally predict the turbulence

by means of a linear dynamical system.

One of the main advantages of the proposed approach is

that it can be generalized to the Multi-Conjugated Adaptive

Optics (MCAO) case, that grants larger sky coverage with

respect to standard AO systems [3]. To achieve this, in

a MCAO system the atmosphere structure is completely

reconstructed and different mirrors are used to correct the

turbulent phase associated to different turbulent layers. This

fact is reflected in the structure of the linear predictor that

we propose: The state vector is partitioned in blocks, each

of them describing the current phase values of one of the

turbulence layers. Hence, this model provides a complete

reconstruction of the turbulence as required by a MCAO

system.

The paper is organized as follows. In Section II the

common turbulence statistical model is briefly described.

Then, in Section III we introduce a Markov Random Field

spatial representation for the atmospheric turbulence and we

exploits it to estimate the atmospheric turbulence structure.

In Section IV we propose a linear system for turbulence

prediction based on the turbulence structure estimated in

Section III. We conclude in Section V with showing the

results of some simulations.

II. TURBULENCE PHYSICAL MODEL

The spatial statistical characteristics of the turbulent phase

φ are generally described by means of the structure function,

which measures the averaged difference between the phase

at two points at locations r1 and r2 of the wavefront, which

are separated by a distance r on the aperture plane (Fig. 1),

Dφ(r) =
〈

|φ(r1) − φ(r2)|
2
〉

.
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The structure function Dφ is related to the covariance func-

tion of φ, Cφ(r) = 〈φ(r1), φ(r2)〉, as:

Dφ(r) = 2
(

σ2
φ − Cφ(r)

)

, (1)

where σ2
φ is the phase variance.

Fig. 1. Telescope image domain: Two points, r1 and r2, separated by a
distance r on the telescope aperture plane.

According to the Von Karman theory, the phase structure

function evaluated at distance r is the following (see [4]):

Dφ(r) =

(

L0

r0

)5/3

c

[

Γ(5/6)

21/6
−

(

2πr

L0

)5/6

K5/6

(

2πr

L0

)

]

,

where K·(·) is the MacDonald function (modified Bessel

function of the third type), Γ is the Gamma function, L0 is

the outer scale, r0 is a characteristic parameter called the

Fried parameter (see [5]), and the constant c is:

c =
21/6Γ(11/6)

π8/3

[

24

5
Γ(6/5)

]5/6

.

From the relation between the structure function and the

covariance (1), the spatial covariance of the phase between

two points at distance r results

Cφ(r) =

(

L0

r0

)5/3
c

2

(

2πr

L0

)5/6

K5/6

(

2πr

L0

)

. (2)

Notice that in real applications only a finite number of

sensors is available. These are usually distributed on a grid,

thus the turbulent phase is measured only on a discrete

domain L, which is that of Fig. 2(b), i.e. a sensor is placed at

each node of the grid. Without loss of generality we assume

that sensors are uniformly spaced: The closest neighbors

of each sensor (both along the horizontal and the vertical

directions) are placed at a distance of ps meters. We denote

with φ(u, v, t) the value of the turbulent phase on the point

(u, v) ∈ L at time t.

(a) (b)

Fig. 2. (a) Atmospheric turbulence is modeled as a superposition of l
layers. (b) Discrete domain L.

In order to describe its temporal characteristics, the tur-

bulence is generally modeled as the superposition of a finite

number l of layers. The ith layer models the atmosphere

from an altitude of hi−1 to hi meters, where hl ≥ · · · ≥
hi ≥ hi−1 ≥ · · · ≥ h0 = 0 (Fig. 2(a) ). Let ψi(u, v, t) be

the value of the ith layer at point (u, v) on telescope aperture

and at time t. Then the total turbulent phase at (u, v) and at

time t is

φ(u, v, t) =
l

∑

i=1

γiψi(u, v, t) , (3)

where γi are suitable coefficients. Without loss of generality

we assume that
∑l

i=1 γ2
i = 1.

The layers are assumed to be stationary and characterized

by the same spatial characteristics, i.e. all the layers are spa-

tially described by the same structure function. Furthermore

they are assumed to be independent, hence

E[ψi(u, v, t)ψj(u
′, v′, t′)] = 0 , 1 ≤ i ≤ l, 1 ≤ j ≤ l,

j 6= i , 1 ≤ u ≤ m, 1 ≤ v ≤ m, 1 ≤ u′ ≤ m, 1 ≤ v′ ≤ m.

A commonly agreed assumption considers that each layer

translates in front of the telescope pupil with constant

velocity vi (Taylor approximation [1]), thus

ψi(u, v, t+kT ) = ψi(u−vi,ukT, v−vi,vkT, t) , i = 1, . . . , l
(4)

where vi,u and vi,v are the projections of the velocity vector

vi along respectively the horizontal and the vertical axis,

while kT is a delay multiple of the sampling period T .

The velocity vectors are assumed to be different for different

layers, i.e. vi 6= vj if i 6= j.

III. DETECTION OF LAYERS: SPEED AND ENERGY

The aim of this section is the estimation of the turbulence

parameters (l, γ1, . . . , γl, v1,u, . . . , vl,u, v1,v, . . . , vl,v) in the

model given by Eqs. (3) and (4). To simplify the notation, in

this Section we consider the 1D case. Then the parameters

to be estimated are (l, γ1, . . . , γl, v1, . . . , vl), where vi is the

velocity of the ith layer. The generalization of the procedure

to the 2D case is immediate, leading just to a more complex

formulation of the equations.

We then assume that the turbulence is a scalar random

process, and at each sampling time we observe only a limited

range of its values, which is generally affected by a zero-

mean white-noise process w. However, in this Section for

simplicity of exposition we will assume w = 0.

In this case L reduces to a 1D interval: Let m be the

interval size, then L = [1, . . . ,m]. Let y(u, t) be the value of

the measured phase turbulence on the spatial position u ∈ L

at time t. Similarly, let ψi(u, t) be value of the ith turbulent

layer on the position u ∈ L at time t. Then at time t we

measure the vector [y(1, t), y(2, t), . . . , y(m, t)]
T

.

Since the spatial correlation of the turbulence between two

points at distance r decreases quite fast when r becomes

larger, we spatially model the turbulent phase as a Markov

random field (MRF). In accordance with the physical model

of the turbulence of Section II, the MRF describing the

spatial characteristics of the turbulent phase is assumed to

be homogeneous and isotropic.
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As shown in [6], y(ū, t), the value of the MRF on the

generic point ū at time t, can be expressed as the best linear

prediction of y(ū, t) given the values of its neighbors N(ū)
at time t plus an “innovation” process e(ū, t). Where the

neighborhood N(ū) of the point ū ∈ L is defined (in 1D) as

follows:

N(ū) =
{

u ∈ L | 0 < |u − ū| ≤ d̄
}

,

where d̄ is a suitable distance.

According with [7], we assume that the turbulent phase

has Gaussian statistics, therefore the best (spatial) linear pre-

diction operator Ê[·] corresponds to the expectation operator

E[·], that is

y(ū, t) =
∑

u∈N(ū)

a|ū−u|y(u, t) + e(ū, t) , (5)

where {ai} are suitable coefficients which yield the best

(spatial) linear prediction of y(ū, t) given the values of its

neighbors (see, for example, [8] for the computation of the

coefficients of the best linear predictor).

Furthermore,

E[y(ū, t)e(u, t)] = σ2
eδū−u

and

E[e(ū, t)e(u, t)] =







σ2
e ū = u

−a|ū−u|σ
2
e u ∈ N(ū)

0 otherwise

.

In the above equations we denoted the Kronecker’s delta with

δu, that is

δu =

{

1 u = 0
0 otherwise

.

We stress the fact that the MRF representation provides

only a statistical approximation of the real process. How-

ever, as long as d̄ is chosen sufficiently large, this can be

considered a good approximation.

Since the layers have the same spatial statistical charac-

terization, each layer can be described using a similar MRF

representation of (5), that is

ψi(ū, t) =
∑

u∈N(ū)

a|ū−u|ψi(u, t) + ei(ū, t) , (6)

for i = 1, . . . , l. Since the layers are independent then

E[ei(ū, t̄)ej(u, t)] = 0 , (7)

if i 6= j, while

E[ei(ū, t)ei(u, t)] =







σ2
e ū = u

−a|ū−u|σ
2
e u ∈ N(ū)

0 otherwise

. (8)

Notice that e(u, t), referred to the global measured phase y
(5), can be expressed as a liner combination of ei(u, t), i =
1, . . . , l, that is

e(u, t) =
l

∑

i=1

γiei(u, t) . (9)

Equations (5),(7),(8) and (9) allow us to formulate the

algorithm for the detection of turbulence layers. First, let us

assume that the translations of each layer during a sample

period (that is the velocities per frame) are rational multiples

of the pixel size. Then, there exists an integer number ki,

such that

ψi(u, t) = ψi(u + kiviT, t + kiT ), u = 1, . . . ,m , (10)

where vi is the velocity of the ith layer. Three observations

are now in order:

• Since the coefficients {ai} can be easily computed from

the spatial theoretical description of the turbulence (the

second order spatial statistical characteristics of the

turbulence are described by (2), and the coefficients

{ai} can be computed as those of the best linear

predictor), then e(u, t), u = d̄ + 1, . . . ,m − d can be

computed for all t from (5).

• From (7) and (9), then

E[e(ū, t̄)e(u, t)] =
l

∑

i=1

γ2
i E[ei(ū, t̄)ei(u, t)] . (11)

• From (10) and (8), it follows that

E[ei(u, t)ei(u + kiviT, t + kiT )] = σ2
e , i = 1, . . . , l,

(12)

while

E[ei(u, t)ei(ū, t + kiT )] = 0, i = 1, . . . , l, (13)

if ū /∈ N(u + kivi).

Hence, (11) is different from zero only if there is at least a

layer, i, such that ū ∈ N(u + kiviT ), where ki = |t̄ − t|/T .

Thus, since the velocities of different layers are assumed

to be different, the temporal covariances of the spatial

prediction error e, provides us with a simple method to detect

the turbulence layers.

Let us define cτ,j , rτ and r̄ as follows

cτ,j = E[e(u, t)e(u + j, t + τ)] ,

rτ (t) =

{

cτ,t −m + 1 ≤ t ≤ m − 1
0 otherwise

,

r̄(t) =
T̄

∑

τ=0

rτ (t − τ(2m − 1) − m)δ|t−τ(2m−1)|<m .

Furthermore, let the following two definitions hold.

Definition 1: Two velocities vi and vj are said to be

distinguishable in t̄ temporal instants on the domain L if

there exist t̄i, t̄j , with 1 ≤ t̄i, t̄j ≤ t̄, such that t̄ivi ∈ L,

t̄i|vi − vj | ≥ 2d̄ + 1 and t̄jvj ∈ L, t̄j |vi − vj | ≥ 2d̄ + 1.

This definition can be easily generalized as follows.

Definition 2: The velocities (v1, . . . , vl) are said to be

distinguishable in t̄ temporal instants on the domain L if

for each (i, j), with i 6= j, (vi, vj) are distinguishable.

The resulting detection algorithm is as follows.

Algorithm 1: Detection of the layers

Step 1: Rough estimation of the velocities

Ŝl̂ = ∅;
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for τ = T̄ : 1
for t = −m + 1 : m − 1

v = t/τ ;

if (rτ (t) 6= 0 ∧
∧ rτ (t) = max

(

rτ (t − d̄), . . . , rτ (t + d̄)
))

∧

∧
(

Ŝl̂ ∩ [v − d̄/τ, v + d̄/τ ] = ∅
)

Ŝl̂ = Ŝl̂ ∪ v;

end

end

end

l̂ = |Ŝl̂|;
{v̂1, . . . , v̂l̂} = Ŝl̂;

Step 2: velocities update and weights estimation for i = 1 : l̂
γ̂i = 0;

for τ = 1 : T̄
if

(

(

Ŝl̂ ∩ [v̂i − d̄/τ, v̂i + d̄/τ ] = v̂i

)

∧

∧
(

max(rτ (v̂iτ − d̄), . . . , rτ (v̂iτ + d̄)) > γ̂2
i

)

)

γ̂i = (max(rτ (v̂iτ − d̄), . . . , rτ (v̂iτ + d̄))1/2;

v̂i = (arg max(rτ (v̂iτ − d̄), . . . , rτ (v̂iτ + d̄)))/τ ;

end

end

end

where Ŝl̂ is the set of the detected velocities. Then the

following proposition holds.

Proposition 1: Let (l, v1, . . . , vl, γ1, . . . , γl) be the true

turbulence parameters and (l̂, v̂1, . . . , v̂l̂, γ̂1, . . . , γ̂l̂) those

learnt with the proposed algorithm. If the velocities

(v1, . . . , vl) are distinguishable in t̄ temporal instants on the

domain L, then l̂ = l and v̂i = vi, γ̂i = γi, i = 1, . . . , l.

We stress the fact that in this algorithm we have directly

used the “true” temporal correlations of the spatial innovation

e. However, in real applications these will not be directly

accessible. Hence the above algorithm has to be slightly

modified to take in account of the use of sample covariances,

e.g. estimated from N temporal samples. This case, that is

only formally more complicated, has been considered in [9].

IV. TURBULENCE TEMPORAL PREDICTION

Notice that an AO system typically requires more than one

sample period to complete the reconstruction procedure and

the computation of the control law. Hence, to make its effort

effective, it is of fundamental importance the introduction of

a prediction step.

In this Section we consider a linear dynamic system

for the temporal prediction of the turbulent phase. In the

computation of the system parameters we exploit the results

on layers estimation described in the previous Section.

Let φ(t) be the vector containing the values of the turbu-

lent phase over the telescope pupil at time t. Notice that the

AO system does not take into account the phase translation

over the entire telescope aperture. Thus we can neglect the

current mean of the signal, and we consider ϕ, defined as

follows

ϕ = φ −
1

|L|







1
...

1







([

1 . . . 1
]

φ
)

=

(

I −
1

|L|
1

)

φ

where 1 is a |L| × |L| matrix of ones.

Let us consider the following linear dynamic system to

model the temporal dynamic of the turbulent phase (where

with an abuse of notation we use again the symbol y with a

slightly different meaning):

{

x(t + 1) = Ax(t) + η(t)
y(t) = Cx(t) + ξ(t)

(14)

where η(t) and ξ(t) are zero-mean white Gaussian noises,

with η(t) ∼ N (0, Q) and ξ(t) ∼ N (0, R) and η and ξ are

assumed to be orthogonal. The system matrices {A,C,Q,R}
and the processes y and x are defined more precisely in the

following paragraphs.

To reduce the complexity of the control computation, ϕ(t)
is projected on a set of spatial bases. In particular here we

consider the set of spatial bases U provided by the Principal

Component Analysis. In practice we consider only the n
(with n ≪ |L|) bases associated to the first n principal

components of ϕ, which are those containing most of its

energy. As shown in [10], this is a well suited set of bases

for turbulent phase representation. Let z(t) be the projection

of ϕ(t) on the set of spatial bases U , z(t) = UT ϕ(t),
then ϕ(t) = Uz(t) + ǫ(t) ≈ Uz(t), where ǫ(t) is the

representation error, i.e. the error due to the use of a small

finite number of bases, n.

Furthermore, we assume that the measurement process

is affected by a zero-mean Gaussian white noise w, with

variance Σw. In our examples Σw = σ2
wI . Then the output

process y, can be written as y(t) = ϕ(t) + w(t) = Uz(t) +
ǫ(t) + w(t) = Uz(t) + ξ(t), where ξ(t) = ǫ(t) + w(t).

With an abuse of notation, we call ψi(t) the vector contain-

ing the values of the ith turbulent layer over the telescope

pupil at time t. Then, by construction, we decompose the

state vector x(t) in l̂ blocks,

x(t) = [x1(t)
T . . . xl̂(t)

T ]T ,

with ψi(t) ≈ Uxi(t). Thus xi(t) takes in account of the

contribution of the ith layer to the current value of the

turbulent phase. Moreover

z(t) =
l̂

∑

i=1

γ̂ixi(t) =
[

γ̂1I γ̂2I . . . γ̂l̂I
]

x(t) .

From the block structure of x, it follows a similar structure

also for A ∈ R
(n·l̂)×(n·l̂) and C ∈ R

|L|×(n·l̂). In particular

C is defined as follows

C =
[

γ̂1U γ̂2U . . . γ̂l̂U
]

,
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while, since the layers are assumed to be independent, then

A =

















Â1 0
. . . 0

0 Â2
. . . 0

0 0
. . . 0

0 0
. . . Âl̂

















,

where

Âi = E
[

ψi(t + 1)ψi(t)
T
]

E
[

ψi(t)ψi(t)
T
]−1

, i = 1, . . . , l̂.

In practice Âi can be easily computed from the turbulence

spatial covariance (2) and the estimated velocity v̂i.

From (14) follows immediately that

R = Σy − CΣxCT + Σw

and

Q = Σx − AΣxAT ,

where Σy = E[y(t)y(t)T ] can be computed from (2). Notice

that the layers are independent to each other, hence Σx =
E[x(t)x(t)T ] and Q are a block diagonal matrices, e.g.

Σx =

















γ̂2
1Σψ1

0
. . . 0

0 γ̂2
2Σψ2

. . . 0

0 0
. . . 0

0 0
. . . γ̂2

l̂
Σψ

l̂

















,

where, actually, Σψi
= Σy, i = 1, . . . , l̂.

Then, the temporal prediction of the turbulent phase is

made using a steady-state Kalman filter, i.e., to reduce the

computational complexity the asymptotic Kalman gain is

used [8].

Finally, let x̂(t+2|t) be the prediction of x(t+2) given the

measurements until time t provided by the Kalman filter ap-

plied on the linear system (14), then we compute the energy

of the 2-step prediction error ε2(t) = (Uz(t)−Cx̂(t|t− 2))
as

E‖ε2‖
2 = trace (Σε2

)

where Σε2
is the variance of ε2. In the simulations we

performed, the variance of Σε2
is approximated with that

provided by the steady-state Kalman filter. Let P∞ be the

covariance of the state prediction error provided by the

steady-state Kalman filter, then

Σε2
≈ C(AP∞AT + Q)CT .

Furthermore, we normalize the energy of ε2 with respect to

the energy of U(z(t) − z(t − 2)), which is the same of the

energy of (z(t)−z(t−2)) since U is part of a unitary matrix.

Then, we consider as performance index

100 · E‖ε2‖
2/E‖z(t) − z(t − 2)‖2 . (15)

We stress the fact that this is not an absolute index of the

system performances, since the energy of the error due to the

use of a finite number n of bases is not included. However,

(15) says how much (in percent energy) of the variation of

the signal can be predicted by the considered system. Thus

it evaluates only the prediction performances of the system.

For example, if (15) is equal to 100, then, from the prediction

point of view, the corresponding system is equivalent to use

z(t − 2) as a prediction of z(t).
Notice that, even if (15) sometimes increases when n

becomes larger, the overall (representation and prediction)

error of the system usually becomes lower when the number

of bases n becomes larger.

V. SIMULATIONS

We distinguish two steps in our simulations: First, in sub-

section V-A, we estimate the layers characteristics using

algorithm 1, then, in sub-section V-B, we use the linear

system (14) to predict the turbulence.

A. Estimation of the layers

Since usually the layers move slowly over the telescope

pupil here we consider three examples of layer detection

where the layers translate less than a pixel per frame. To

make this possible we have simulated the layers at a sub-

pixel scale: A 10 × 10 matrix of sub-pixels has been used

to simulate each pixel in L. In the simulations of this sub-

section we set the simulation parameters to σw = 0 and

the number of samples, N , used to estimate the temporal

covariances used in algorithm 1 to N = 5000. When σw is

different from zero, a larger number of samples N is needed

to obtain results comparable with those reported in this sub-

section.

The results of our simulations are reported in Table I,II:

vi,u, vi,v and γi corresponds to the true values of the

parameters, v̂i,u, v̂i,v and γ̂i are the estimated ones. The

velocities are written in [pixels/frame].

The results obtained with the proposed method are quite

encouraging: Indeed in all of the examples the number of

layers has been correctly estimated, i.e. l̂ = l, and the values

of the estimated parameters are quite close to the true ones.

TABLE I

DETECTION OF THE LAYERS.

1
st layer 2

nd layer 3
rd layer 4

th layer

vi,u 0.216 0.391 0.612 0.795

v̂i,u 0.2162 0.3913 0.6122 0.7949

vi,v 0 0 0 0

v̂i,v 0 0 0 0

γ2

i 0.31 0.3 0.2 0.19

γ̂2

i 0.3112 0.3007 0.2005 0.1876

B. Temporal prediction of the turbulent phase

In the simulations considered in this sub-section, we use

the results of sub-section V-A to compute the parameters

of (14) as described in Section IV. Then, for each of the

examples of Tables I,II we evaluate the 2-step prediction

performances of the linear system (14), computed as in (15).

The results are shown respectively in Figs. 3,4.
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TABLE II

DETECTION OF THE LAYERS.

1
st layer 2

nd layer 3
rd layer 4

th layer

vi,u 0.216 −0.191 0 0

v̂i,u 0.2162 −0.1905 0 0

vi,v 0 0 0.11 0.287

v̂i,v 0 0 0.1111 0.2881

γ2

i 0.41 0.25 0.2 0.14

γ̂2

i 0.4137 0.2495 0.1973 0.1395

For comparison we report also the prediction performances

of a linear system with the parameters estimated as described

in [11].
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Fig. 3. In solid line the 2-step prediction error obtained using the
method described in [11]. In dashed-dotted line those obtained with the
system described in Section IV. The error is normalized as in (15). The
characteristics of the turbulence layers are those reported in Table I.
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Fig. 4. In solid line the 2-step prediction error obtained using the
method described in [11]. In dashed-dotted line those obtained with the
system described in Section IV. The error is normalized as in (15). The
characteristics of the turbulence layers are those reported in Table II.

As shown in Figs. 3,4, the use of the information on the

turbulence structure (as described in Section IV) allows the

system to provide better results than those of the system of

[11] in all our simulations.

VI. CONCLUSIONS

In this paper we have considered the problem of atmo-

spheric turbulence prediction from the point of view of a

telescope’s adaptive optics system.

First, we have described a procedure to estimate the char-

acteristics of the turbulence layers. The proposed algorithm

is based on a MRF representation of the turbulent phase.

The algorithm properly estimates energies and velocities

of the layers from the temporal correlations of the spatial

innovation of the turbulent phase (computed using the MRF

model of the turbulence).

Then, we have proposed a linear dynamic system which,

using the estimated information on the turbulence structure,

provides a good temporal description of the turbulence. The

prediction performances of this system has been tested in

some simulations.

We stress the fact that this approach can be considered as

the generalization of those proposed in [11] to the case where

the 3D structure of the turbulence is estimated. This makes

it particularly interesting for future applications in MCAO

systems.
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